Structure of the aqueous electron: assessment of one-electron pseudopotential models in comparison to experimental data and time-dependent density functional theory.

نویسندگان

  • John M Herbert
  • Leif D Jacobson
چکیده

The prevailing structural paradigm for the aqueous electron is that of an s-like ground-state wave function that inhabits a quasi-spherical solvent cavity, a viewpoint that is supported by numerous atomistic simulations using various one-electron pseudopotential models. This conceptual picture has recently been challenged, however, on the basis of results obtained from a new electron-water pseudopotential model that predicts a more delocalized wave function and no well-defined solvent cavity. Here, we examine this new model in comparison to two alternative, cavity-forming pseudopotential models. We find that the cavity-forming models are far more consistent with the experimental data for the electron's radius of gyration, optical absorption spectrum, and vertical electron binding energy. Calculations of the absorption spectrum using time-dependent density functional theory are in quantitative or semiquantitative agreement with experiment when the solvent geometries are obtained from the cavity-forming pseudopotential models, but differ markedly from experiment when geometries that do not form a cavity are used.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

First-Principles Study of Structure, Electronic and Optical Properties of HgSe in Zinc Blende (B3) Phase

In this paper, the structural parameters, energy bands structure, density ofstates and charge density of HgSe in the Zincblende(B3) phase have been investigated.The calculations have been performed using the Pseudopotential method in theframework of density functional theory (DFT) by Quantum Espresso package. Theresults for the electronic density of states (DOS) show tha...

متن کامل

Absorption Spectra and Electron Injection Study of the Donor Bridge Acceptor Sensitizers by Long Range Corrected Functional

Ground state geometries have been computed using Density Functional Theory (DFT) at B3LYP/6-31G(d,p) level of theory. The excitation energies and spectroscopic parameters have been computed using Long range Corrected (LC) hybrid functional by Time Dependent Density Functional Theory (TDDFT) with LC-BLYP level of theory. The Polarizable Continuum Model (PC...

متن کامل

Photosensitizing properties for porphyrazine and some derivatives

We have investigated photosensitizing properties for porphrazine and eleven of its related derivatives based on time-dependent density functional theory (TD-DFT) calculations. The modles have been divided into two categories based on the existence of CN functional group in one category but not in the other one. The other functional groups include H, CH3, F, CF3, C6H5, and C6F5 counterparts. The...

متن کامل

The structural and density state calculation of B Nitrogen doped silicene nano flake

In this paper, we study the effect of single Boron/Nitrogen impurityatom on electronic properties of a silicene nano flake. Our calculations are basedon density functional theory by using Gaussian package. Here, one Si atom insilicene nano flake substitutes with a Boron/Nitrogen atom. The results show thatsubstitution of one Si atom with single Boron/Nitrogen atom increases distanceof impurity ...

متن کامل

Theoretical Study of stereoelectronic effects of Boron Nitride Nanotubes in interaction with 7-hydroxy phenothiyazine 3-one sulphure dye by electron density functional theory

In this study interaction of phenothiazine sulfur dye with (5, 5) armchair open-end boron nitride nanotubes (BNNTs) in interaction (with a length of 7 Å) was investigated. The impacts of the estereoelectronic effect associated with donor-acceptor electron delocalizations, dipole-dipole interactions and total steric exchange energies on the structural and electronic properties and reactivity of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The journal of physical chemistry. A

دوره 115 50  شماره 

صفحات  -

تاریخ انتشار 2011